p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.408C23, C23.604C24, C22.2812- 1+4, C22.3782+ 1+4, C22⋊C4⋊3Q8, C2.29(D4×Q8), C4⋊C4.119D4, C23.34(C2×Q8), C2.50(D4⋊3Q8), C2.109(D4⋊5D4), (C22×C4).879C23, (C23×C4).464C22, (C2×C42).656C22, C22.413(C22×D4), C23.8Q8.48C2, C23.7Q8.65C2, C23.Q8.27C2, C22.145(C22×Q8), (C22×Q8).188C22, C23.81C23⋊90C2, C23.78C23⋊47C2, C23.67C23⋊84C2, C24.C22.51C2, C23.65C23⋊124C2, C2.C42.310C22, C2.47(C22.31C24), C2.41(C22.35C24), C2.30(C23.41C23), C2.18(C22.56C24), (C2×C4).69(C2×Q8), (C2×C4).106(C2×D4), (C2×C42.C2)⋊22C2, (C2×C22⋊Q8).45C2, (C2×C4).430(C4○D4), (C2×C4⋊C4).417C22, C22.466(C2×C4○D4), (C2×C22⋊C4).270C22, SmallGroup(128,1436)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.408C23
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=e2=ba=ab, g2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 436 in 236 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C42.C2, C23×C4, C22×Q8, C23.7Q8, C23.8Q8, C24.C22, C23.65C23, C23.67C23, C23.78C23, C23.Q8, C23.81C23, C2×C22⋊Q8, C2×C42.C2, C24.408C23
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.31C24, C22.35C24, C23.41C23, D4⋊5D4, D4×Q8, D4⋊3Q8, C22.56C24, C24.408C23
(1 9)(2 10)(3 11)(4 12)(5 37)(6 38)(7 39)(8 40)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 43)(22 44)(23 41)(24 42)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 64)(34 61)(35 62)(36 63)
(1 11)(2 12)(3 9)(4 10)(5 39)(6 40)(7 37)(8 38)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(21 41)(22 42)(23 43)(24 44)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 62)(34 63)(35 64)(36 61)
(1 25)(2 26)(3 27)(4 28)(5 22)(6 23)(7 24)(8 21)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(29 45)(30 46)(31 47)(32 48)(33 50)(34 51)(35 52)(36 49)(37 44)(38 41)(39 42)(40 43)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 51 3 49)(2 20 4 18)(5 30 7 32)(6 57 8 59)(9 19 11 17)(10 52 12 50)(13 23 15 21)(14 42 16 44)(22 46 24 48)(25 34 27 36)(26 62 28 64)(29 38 31 40)(33 56 35 54)(37 60 39 58)(41 47 43 45)(53 63 55 61)
(2 12)(4 10)(5 42)(6 23)(7 44)(8 21)(14 48)(16 46)(17 63)(18 35)(19 61)(20 33)(22 39)(24 37)(26 54)(28 56)(30 58)(32 60)(34 51)(36 49)(38 41)(40 43)(50 62)(52 64)
(1 15 9 47)(2 14 10 46)(3 13 11 45)(4 16 12 48)(5 33 37 64)(6 36 38 63)(7 35 39 62)(8 34 40 61)(17 23 49 41)(18 22 50 44)(19 21 51 43)(20 24 52 42)(25 57 55 31)(26 60 56 30)(27 59 53 29)(28 58 54 32)
G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,51,3,49)(2,20,4,18)(5,30,7,32)(6,57,8,59)(9,19,11,17)(10,52,12,50)(13,23,15,21)(14,42,16,44)(22,46,24,48)(25,34,27,36)(26,62,28,64)(29,38,31,40)(33,56,35,54)(37,60,39,58)(41,47,43,45)(53,63,55,61), (2,12)(4,10)(5,42)(6,23)(7,44)(8,21)(14,48)(16,46)(17,63)(18,35)(19,61)(20,33)(22,39)(24,37)(26,54)(28,56)(30,58)(32,60)(34,51)(36,49)(38,41)(40,43)(50,62)(52,64), (1,15,9,47)(2,14,10,46)(3,13,11,45)(4,16,12,48)(5,33,37,64)(6,36,38,63)(7,35,39,62)(8,34,40,61)(17,23,49,41)(18,22,50,44)(19,21,51,43)(20,24,52,42)(25,57,55,31)(26,60,56,30)(27,59,53,29)(28,58,54,32)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,51,3,49)(2,20,4,18)(5,30,7,32)(6,57,8,59)(9,19,11,17)(10,52,12,50)(13,23,15,21)(14,42,16,44)(22,46,24,48)(25,34,27,36)(26,62,28,64)(29,38,31,40)(33,56,35,54)(37,60,39,58)(41,47,43,45)(53,63,55,61), (2,12)(4,10)(5,42)(6,23)(7,44)(8,21)(14,48)(16,46)(17,63)(18,35)(19,61)(20,33)(22,39)(24,37)(26,54)(28,56)(30,58)(32,60)(34,51)(36,49)(38,41)(40,43)(50,62)(52,64), (1,15,9,47)(2,14,10,46)(3,13,11,45)(4,16,12,48)(5,33,37,64)(6,36,38,63)(7,35,39,62)(8,34,40,61)(17,23,49,41)(18,22,50,44)(19,21,51,43)(20,24,52,42)(25,57,55,31)(26,60,56,30)(27,59,53,29)(28,58,54,32) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,37),(6,38),(7,39),(8,40),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,43),(22,44),(23,41),(24,42),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,64),(34,61),(35,62),(36,63)], [(1,11),(2,12),(3,9),(4,10),(5,39),(6,40),(7,37),(8,38),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(21,41),(22,42),(23,43),(24,44),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,62),(34,63),(35,64),(36,61)], [(1,25),(2,26),(3,27),(4,28),(5,22),(6,23),(7,24),(8,21),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(29,45),(30,46),(31,47),(32,48),(33,50),(34,51),(35,52),(36,49),(37,44),(38,41),(39,42),(40,43)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,51,3,49),(2,20,4,18),(5,30,7,32),(6,57,8,59),(9,19,11,17),(10,52,12,50),(13,23,15,21),(14,42,16,44),(22,46,24,48),(25,34,27,36),(26,62,28,64),(29,38,31,40),(33,56,35,54),(37,60,39,58),(41,47,43,45),(53,63,55,61)], [(2,12),(4,10),(5,42),(6,23),(7,44),(8,21),(14,48),(16,46),(17,63),(18,35),(19,61),(20,33),(22,39),(24,37),(26,54),(28,56),(30,58),(32,60),(34,51),(36,49),(38,41),(40,43),(50,62),(52,64)], [(1,15,9,47),(2,14,10,46),(3,13,11,45),(4,16,12,48),(5,33,37,64),(6,36,38,63),(7,35,39,62),(8,34,40,61),(17,23,49,41),(18,22,50,44),(19,21,51,43),(20,24,52,42),(25,57,55,31),(26,60,56,30),(27,59,53,29),(28,58,54,32)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4P | 4Q | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.408C23 | C23.7Q8 | C23.8Q8 | C24.C22 | C23.65C23 | C23.67C23 | C23.78C23 | C23.Q8 | C23.81C23 | C2×C22⋊Q8 | C2×C42.C2 | C22⋊C4 | C4⋊C4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C24.408C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C24.408C23 in GAP, Magma, Sage, TeX
C_2^4._{408}C_2^3
% in TeX
G:=Group("C2^4.408C2^3");
// GroupNames label
G:=SmallGroup(128,1436);
// by ID
G=gap.SmallGroup(128,1436);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,344,758,723,1571,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=e^2=b*a=a*b,g^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations